
1

2

This presentation will be divided in 5 sections:
• Small introduction into atmospheric scattering phenomenon - its importance in

realistic rendering and in games and physical laws that cover this topic.
• Brief description of how previous games handled the atmospheric effects and why

none of existing solutions was enough for us.
• Quick overview of key ideas behind our algorithm, its steps and used data

structures.
• …also small implementation details and keys to make algorithm fast and robust.
• And finally ideas we wanted to implement and are implementing for future

projects, but didn’t make it into AC4 due to time or project constraints.

3

So, why do we need atmospheric scattering simulation?
It is physical effect responsible for many visual elements of visible world, such as sky
color, fog, clouds, god rays, light shafts, volumetric shadows or even smoke.

4

So why do we bother with such effects in games?
They are needed not only to reproduce reality correctly, but also helps player or
viewer to perceive distances between objects and creates uniform scene
composition.
It helps to hide LOD and streaming (even very old games used very thick linear fog to
hide very short streaming distance).
…and finally it is very important tool and part of art direction. It helps to build scene
mood and atmosphere or do some special effects.

5

Phenomenon of atmospheric scattering is caused by interaction of photons with
particles that form any transporting media. When light traverses any medium that
isn’t void, photons/light rays may collide with particles that create such medium. On
collision, they may collide and either be diffused or absorbed (and turned into
thermal energy). In optics, such process is usually modelled statistically and we can
define amount of energy that takes part in following processes:

• Transmittance
• Scattering
• Absorbtion

As energy is always conserved, we can write that:

Lincoming = Ltransmitted + Labsorbed + Lscattered

6

No light scattering / non-participating transport media
We assume that the transport media behaves like vacuum – there is no radiance loss
or gain on light paths between objects.
Typical rendering scenario – light from the light source bounces from one object to
another according to the surface BRDF functions, finally reaching camera/eye.
Simplest possible case is no bounced light/GI, just direct lighting.

7

When media participates in light transport, every particle large enough to affect
photons/light rays takes part in the light transport equation.
For example dust or water particles make some light rays / photons bounce in
random directions, making some light enter the light path (in-scattering).
While on the other hand also some light gets bounced away, exiting the light path
and becoming darker (out-scattering).

Obviously, in reality this is very complex as every particle both out-scatters and in-
scatters some light according to phase functions, so multiple rays exit and enter the
light path multiple times, but usually in real-time rendering we have to ignore
multiple scattering.

8

Physical law that is very useful for light scattering calculations is Beer-Lambert law
that describes extinction of incoming lighting (light out-scattering). This law defines
value of transmittance (proportion of light transported through medium to incoming
light from given direction). It is defined usually as:

T A → B = 𝑒− 𝐴
𝐵
𝛽𝑒(𝑥) 𝑑𝑥

Symbol 𝛽𝑒 is extinction coefficient, defined as sum of scattering and absorption
coefficients. We can see from Beer-Lambert law that light extinction is exponential
function of travelled distance by light in given medium.

9

Depending on the medium particles, amount of light that takes part in those
processes can be different. One example of scattering models is Rayleigh scattering. It
is scattering of very small particles (like air particles), responsible for blue color of the
sky. It is very isotropic, uniform, but wavelength dependent – scattering is stronger
for shorter wavelengths and absorption is negligible.

On the other hand, so called Mie scattering of bigger particles (like aerosols or dust)
has very anisotropic shape with strong forward lobe and much higher absorption
proportion.

10

Phase function is a function that describes how much light is scattered in all direction.
It is a function of angle between the light vector and outgoing direction vectors.
It has property of energy conservation, so integral over all directions must be equal to
1 (or under 1 if it contains information about absorption baked in it).
Some phase functions can be very complex and described from various models or
real captured data.

11

Most common phase function to simulate Mie-like anisotropic scattering is Henyey-
Greenstein phase function. It has numerous advantages – it is efficient to evaluate in
the runtime, expands trivially to spherical harmonics and supports variable
anisotropy factor.
Some more complex phase functions can be constructed from weighted sum of
multiple Henyey-Greenstein phase functions.

12

13

In games, different atmospheric and scattering phenomena were approximated using
many approaches.
First one used since 90s and early OpenGL specifications are analytical solutions. First
approximations used very simple linear depth based fog.
State of the art of fog rendering on previous console generation was analytical,
exponential distance based fog. It was very well described by Wenzel in “Real-time
atmospheric effects in games revisited” presentation. It is based on real scattering
phenomenon and provides analytical solution to it – but unfortunately doesn’t handle
the varying medium density and shadowing.

The second and probably easiest to use (not much programmer support needed) is
using artist authored camera facing billboards or particles (with a fadeout on camera
intersection). This approach has obvious disadvantage of being artist dependent,
tedious to set up, not robust (eg with changing time of day and on some angles
rotation can look “wrong”) and not dynamic enough (not reacting properly to
changes in lighting and shadowing).

14

Third approach that gained popularity because of UE3 and CryEngine is post-effect
and radial blur based screenspace effect. It can look very effective, but unfortunately
disappears completely when light sources are not visible on screen.

Finally, there are ray-marching solutions. They work very well (especially with
epipolar sampling extension), but usually are very short range and have their
limitations – next slide.

15

Raymarching volumetric shadows seemed like most modern solution, used by
multiple other titles and potentially giving biggest visual improvement.
However, we noticed some limitations of regular 2D raymarching.
- Most of those implementations are for close range “volumetric shadows” / “light

shafts”, not really physically based and suited for supporting long range fog. They
often use simply artist-specified blending mode.

- They operate in loops, which is counter-productive on modern GPUs. Especially
with modern architectures like AMD GCN which can launch thousands of thread
waves it is a big waste of GPU power. It usually is about fetching information from
big resolution shadowmaps, so latency hiding can be beneficial here.

- Some smart optimizations gaining popularity recently like epipolar sampling work
under many constraints / limitations like lack of varying media density and no
handling of multiple light sources. Every different light source requires different
epipolar sampling scheme.

- Finally, all up to date implementations were designed as a post-effect and didn’t
handle properly forward-shaded objects like transparencies or particles.

- All modern implementations of raymarching work in smaller resolutions. Usually
signal is low-frequency so it isn’t a big problem on flat surfaces, but produces
undersampling, aliasing and edge artifacts that are difficult to avoid.

16

After prototyping numerous “classic” techniques, our biggest inspiration came from
“Light Propagation Volumes” GI technique by Anton Kaplanyan presented at Siggraph
2009.
In technique summary and future work section, author mentions using lit volumetric
texture – the result of injecting and propagating light to simulate GI – to compute
participating media light transport.
This has advantage of performing raymarching just once, independent of number of
light sources. Whole light transport in participating media can be unified. We believed
that if we added simple shadowing term, we would gain light shafts/god rays just for
the cost of calculating the shadowing.
We decided to follow that path.

17

This inspiration together with raymarching solutions guided us towards developing a
new solution that we called “Volumetric Fog”.

18

VIDEO

19

VIDEO

It worked coherently, correctly and perfectly with multiple light sources

20

21

To allow efficient splitting of passes and launching them separately, we used
volumetric textures as storage for intermediate and partial results.
We used compute shaders and 3D texture UAVs to write volumetric data in both
efficient and very convenient manner.

22

Key idea of our algorithm is to decouple and parallelize typical steps of raymarching
algorithms and launch them separately.
This way we achieve parallelism and possibility of swapping and adjusting every
element of the algorithm separately.

23

We can see on this diagram how we split our algorithm in multiple passes.
1. First and most important part is performing lighting and shadowing calculations

for every volume cell.
2. In parallel (same or parallel pass) or serial, we estimated and animated the

participating media density.
3. Then using this information stored in volume textures, we performed 2D

raymarching through the volume and stored the result in volume slices.
4. And finally using pixel shaders, applied information on screen for forward or

deferred shaded objects.

24

How does our volumetric fog intermediate storage texture look like?

At first, we tried simplest data layout –cuboid aligned to world space coordinates. It provided
multiple benefits – for example very easy temporal filtering, but raymarching through such
volume required multiple samples, was slow and produced aliasing artifacts.

Instead we decided to use layout aligned with the camera frustum. We directly map frustum
to cuboid using normalized device coordinates in width x height axis and for depth slices we
use exponential depth distribution.
We tried various depth distributions and ended up with one concentrated near the camera –
this is where we need the most precision and aliasing artifacts show up easily.
Aligning our texture with the viewing frustum has several disadvantages such as being prone
to temporal aliasing and flickering, but raymarching is just a parallel scan through depth
slices.
We used volumes sized 160x90x64 or 160x90x128 depending on the platform. It provides
fixed cost of almost all of the passes, not dependent on the screen resolution.
In 160x90x64 layout number of texels is equal to number of texels in 720p surface – but for
every cell we perform lighting calculations just once.
Effect range depends on artist defined settings, but we distances between 50 and 128 meters
– to keep long distance fog consistent with current gen art direction – but there are no
reasons why it wouldn’t be possible to do longer range fog (using exponential depth
distribution or cascaded approach)

25

Is this volumetric texture resolution enough?

26

The resolution of our volume textures may seem extremely low, but it is sufficient:
1. We store low frequency information for every depth stored along the ray.
2. Due to the fact that when applying effect, we use quadrilinear filtering on

volumetric data, we are unable to see single texels of volume texture.
3. Every target pixel receives information about proper and precise depth from its

native resolution.
4. Perspective correction and volume shape makes sure that information is

distributed correctly.
5. We don’t get the edge artifacts on depth discontinuities (described on the next

slide).

Obviously, produced effect is very soft and is missing high frequency geometric
details, but it fits our art direction and is quite similar to reality (because in the real
atmosphere multiple scattering effect takes place and softens the look of light shafts
a lot).

Final advantage of not relying on scene depth is possibility of computing this pass in
parallel with regular scene rendering as soon as shadow-maps are ready – for
example using asynchronous compute on AMD hardware with console APIs or
Mantle.

27

When doing regular 2D low resolution rendering, the main problem is behavior on
edge discontinuities. For low resolution post-effect calculations we must pick one
specific depth out of many potential depth fragments – this way some final shaded
fragments will have improper information – either interpolated or selected from the
neighbourhood (bilateral upsampling).

28

Fortunately, with 3D textures and 3D interpolation, we don’t have such problems.
Every full resolution fragment and its depth gets proper, piecewise linear
interpolation of calculated function.
While it is still in low resolution and can be “jagged”, it doesn’t have edge
discontinuity artifacts.

29

We can see on this diagram how low-pass filtering removes temporal aliasing /
flickering problem of high frequency source information.

30

The first step of our algorithm is preparing the shadowmaps to be used fog
calculating sun scattering shadowing.

Why do we need it?

Our regular shadowing cascades were very high resolution (4 cascades, 1536x1536 or
1k x 1k depending on the platform) and had dense, high resolution information in
them.
It was way too much detail for us, especially for close ranges and in first two
cascades, condensed in first couple meters.
For smooth and approximate volumetric fog we needed something of much smaller
resolution to reduce any flickering / aliasing artifacts from moving foliage etc.
First implementations using wide kernel PCF had very poor performance and still
some flickering and aliasing artifacts.

31

The solution came from Exponential Shadow Maps algorithm.
It is simple algorithm that allows filtering of estimated shadowing probability and
therefore downsample the shadowing function.
It is trivial and very efficient to compute shadowing test. Some simple code snippets
of ESM are in bonus slides.

32

First we downsample our cascaded shadowmaps four times (target R32F 1024 x 256
texture). During downsampling we calculate exponential shadowing function (see
Exponential Shadow Mapping, an extension to Variance Shadow Mapping using
exponential function instead of Chebyshevs inequality).

We also do additional separable box filter (as two separate steps) during this pass to
make shadows softer and remove aliasing artifacts.
One disadvantage of ESM making it not practical for regular rendering – shadow
leaking – wasn’t noticeable in our case in participating media.

33

34

Therefore the first step of our algorithm is downsampling the shadowing information.

35

When we have downsampled shadow information ready, we can proceed with
participating medium lighting calculations.

36

We combined density and lighting calculations due to a bit smaller bandwidth usage
and same desired resolution, but they can be split and totally decoupled.
Density calculation is pretty straightforward, it is just one octave of Perlin noise that is
animated by wind. We tried using multiple octaves, but in the end difference was
rather subtle for added cost.
We also calculated vertical media density attenuation, as usually heavy particles such
as steam water particles tend to gather around the ground level with exponential
distribution.
The scattering coefficient got stored in the alpha channel of volume texture.

For lighting part we simply accumulated lighting from main light (sun/moonlight),
constant ambient term and multiple dynamic point lights that were intersecting with
view frustum and marked by artists as lights affecting the atmosphere.
We used mentioned Exponential Shadow Maps shadowing technique to get shadows
from the main light.
We stored lighting information modulated by density in RGB channel of volumetric
texture.

37

On AC4 we didn’t have any physically-based phase functions. Lighting color gradient
(oriented towards direction of sun) was purely art-driven.
We had 2 colors of phase function – in direction of the sun and in opposite direction,
apart from that with fully isotropic shape.
Obviously, any phase function can be applied in this pass to achieve more physically-
correct effect. (described later)

38

Third step is solving the scattering equation by linearly marching through the fog
volume and performing a numerical calculus solution.

39

So how do we solve this scattering equation?

The out-scattering effect is described by Beer-Lambert law, exponential falloff
function of density integral for given distance.
For the in-scattering it is simple sum of in scattered lighting so far (taking distance
based out scattering into account).

We have already our in-scattering values calculated and accumulated in the volume
texture.
Therefore, for every ray we can simply march through the volume starting from
camera, calculate the density sum, accumulate in-scattering radiance and out-
scattering falloff factor.

40

Our compute shader accumulates in-scattered light and fog density at every step
(numerical solution).
This way we end up with a volumetric texture with information at every texel how
much light got in-scattered from camera to given 3D point and how much density of
participating media we accumulated (which describes amount of out-scattered
incoming light).

This data is ready to be applied in either forward (directly when drawing objects) or
deferred (as fullscreen quad pass) manner.

41

On this diagram we see how 2D compute shader thread group marches through 3D
volume, accumulating in-scattered lighting and extinction coefficients.

42

43

We can see on this diagram how due to storing whole view ray information we can
apply volumetric fog information on both solid (1) and multiple transparent objects
(2) and (3). They all have proper and filtered transmittance and in-scattering
information.

44

Final application of effect on screen is trivial in both deferred and forward – no
special tricks, just a simple bilinear look-up from a 3D texture and a fused multiply-
add operation.
Thing worth noting is that the effect is compatible with any number of transparent
objects layers.

45

46

Total cost was surprisingly small, around 1.1ms. Calculating it in double resolution
had a cost of 1.6ms.
Most costly part was building density and lighting the volume, around 0.43ms.
Remaining passes were all under 0.2ms, except for “applying” pass that could be
combined with lighting and would become “free”.

47

First of all, volumetric fog was one of our effects that benefited the most from high
wave occupancy and low VGPR counts – it was useful to split various passes.
Some of cost of volumetric fog is actually cost of shadow-map setup – it makes lots of
sense to re-use it for other low frequency lighting – like particles, translucent and
transparent objects (ocean etc).
Also the cost of calculating the lighting in texture and looping over multiple lights
could be re-used by such render passes – by simple volumetric texture look-up.
Finally, there is no need to calculate full lighting with very high fog distances – after
some distance shadowing and lighting could be LODed away.

48

Some other optimizations include doing some early out on parts of the volumetric
texture that is behind any actual rendered geometry. If engine has some form of
hierarchical Z buffer available, such values can be read by volumetric fog and used for
early out.
Similarly, there is no need to loop over all the visible lights – solutions like Forward+
or Clustered shading can be used for fog light culling.

If such information is not available in the engine or projected performance benefits
wouldn’t be big enough (for example lots of outdoor long-range scenes) then one
could use next-gen consoles async compute capabilities for volumetric fog
calculations. As the algorithm without culling doesn’t rely on scene geometry it is
possible to calculate it as soon as shadowmaps are ready. Volumetric fog can be quite
heavy on both bandwidth and ALU, so it makes sense to put it in parallel with some
vertex heavy pass like filling G-Buffer.

49

In similar manner, lighting could be also injected into volume as alternative to
forward-based lighting techniques.
One could calculate volume bounding box of lights and perform lighting only on cells
intersecting with it. It could be very easy and done using indirect dispatch
functionality on DX11 / next gen consoles.
This optimization could be useful for very complex lights that use many VGPRs for
computation – like area lights.

50

In the final presentation section, I will describe extensions to volumetric fog
developed after AC4.

1. How to make effect much more physically based – missing pieces like support for
physically based phase functions for analytical light sources and SH based light
sources.

2. Making the effect even more stable by introducing temporal reprojection and
jittering.

51

Lack of support of fog ambient/sky lighting results in too much scene darkening in the
shadowed areas.
Some light gets out-scattered, but none is in-scattered due to lack of lighting and it
produces unrealistic result. Therefore we need to add some GI.

52

On this comparison we see how added sky lighting improves the result and adds
proper fog in shadowed areas.

53

Finally, we can see on this screenshot (exaggerated fog and GI) that the GI color
contributes to the final fog color, adding proper color spatial variation.

54

One of very common lighting storage basis for ambient lighting or GI are spherical
harmonics.
They have multiple mathematical properties that make them so useful
(orthonormality, rotation invariance etc.), but another one is the easiness of use of
Zonal Spherical harmonics.
They can be trivially rotated (especially for lower order SH) and it is useful for
volumetric fog as well.
HG phase function has trivial expansion to Zonal SH and for 2nd order it can be easily
rotated (code on slide).
Then to calculate volumetric fog response, one has to simply calculate SH product
integral of rotated phase function SH expansion by view vector and stored sky lighting
/ GI SH representation.

55

While we spend considerable amount of time to remove aliasing and under-sampling
problems on volumetric fog by using down-sampled SM representation, there still
may be some under-sampling artifacts.
One of ideas to fix it is to use the temporal super-sampling by jittering the sample
patterns every frame and using temporal smoothing and reprojection to combine
such patterns from multiple frames.
It is used as a common AA technique in more and more games, but can be used for
volumetric fog as well – as reprojection is much easier in 3D than in 2D case.

56

Reprojection is usually problematic in 2D as there are occlusion / disocclusion
problems when objects on the scene move. It is difficult to both detect such
movement (especially when jittering) and to find proper data to fill resulting holes.
Therefore usually algorithms struggle in finding a sweet-spot between potential
shaking and blurring / tracing / ghosting of dynamic objects.

57

In 3D it is much easier. While space occupied by a dynamic object after movement is
still invalid, all the data behind it is proper (if not using any early culling
optimizations). Only data that was outside the volume aligned with frustum is invalid.
(But still, obvious reprojection problems can happen with strongly view dependent
and anisotropic phase functions).

58

Another aliasing countering technique is sample jittering in spatial grid. While regular
grid sampling produces aliasing that is hard to fight (as low frequency components
not visible in the source signal appear), jittered grid sampling trades aliasing for
higher frequency noise.
Noise and higher frequency signals can be easily filtered and blurred using lower
resolution kernels.
Furthermore, it is possible to jitter and filter in both temporal and spatial domains.

59

This two screenshots show how much better results are achieved by only simplest 1-
sample temporal jitter and reprojection – almost all edge artifacts are gone!
We didn’t check any complex 3D jittered grid sampling patterns, but it is worth
investigating in the future as results could be even better.

60

61

62

63

64

65

66

While in our case density was a simple animated Perlin noise function, it could be
controlled by artists in any way.
Density could be authored and painted on levels for some very objects full of haze
and scattering particles like swamps (mist) or dusty buildings.
It could be injected into volume dynamically by particle systems or some analytical
volumetric shapes / force fields.
See Wrenninge et al at Siggraph 2010 to check how it was done long time ago in
movie / CGI industry!

67

